Weak synchrony in the timing of larval release in upwelling regimes

Steven G. Morgan1,2,*, J. Wilson White1,5, Skyli T. McAfee1,6, Steven D. Gaines3,4, Russell J. Schmitt3,5

1Bodega Marine Laboratory, University of California Davis, 2099 Westside Drive, Bodega Bay, California 94923-0247, USA
2Department of Environmental Science and Policy, University of California Davis, 1 Shields Avenue, Davis, California 95616, USA
3Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, California 93106, USA
4Bren School of Environmental Science and Management, University of California Santa Barbara, California 93106, USA
5Present address: Department of Biology and Marine Biology, University of North Carolina, 601 South College Road, Wilmington, North Carolina 28403-5915, USA
6Present address: California Ocean Science Trust, 1330 Broadway, Suite 1135, Oakland, California 94612, USA

ABSTRACT: Intertidal crabs in diverse habitats worldwide release larvae synchronously during nocturnal spring high tides. This expedites seaward transport of the larvae to beyond high density areas of predatory fishes under the cover of darkness. We found that 4 species of intertidal crabs along the west coast of the USA shared this reproductive timing pattern. As in other mixed semidiurnal tidal regimes, biweekly patterns of larval release were more closely synchronized with the tidal amplitude cycle than the lunar cycle, and some crabs released larvae in daylight. However, unlike other places in the world, larval release was weakly synchronized to environmental cycles regardless of interspecific differences in vertical distributions on the shore. We provide evidence that weak synchrony in the timing of larval release in upwelling regimes can result from exposure to environmental variation over long incubation periods of externally brooded embryos. According to the prevailing paradigm, weaker synchrony in the timing of larval release will increase predation by planktivorous fishes in upwelling regimes. Weak synchrony in the timing of larval release should increase larval mortality in a wide array of animals that brood embryos in the intertidal zone, regardless of the selective force operating, and it could contribute to recruitment limitation in upwelling regimes.

KEY WORDS: Larval release · Hatching · Endogenous rhythms · Upwelling · Fish predation · Larvae

INTRODUCTION

Synchronous bursts of reproduction typically punctuate the lives of plants and animals in response to predictable variation in survival of offspring during environmental cycles (Ims 1990). Seasonal and interannual synchrony have received considerable attention, including spectacular examples of masting by trees, 17 yr cycles of cicadas and mass spawning by corals (Rathcke & Lacey 1985, Babcock et al. 1986, Taylor & Karban 1986). Seasonal variation in reproductive synchrony usually places offspring in favorable environmental conditions, such as desirable levels of temperature, light, rainfall or food (Rathcke & Lacey 1985, Giese & Kanatani 1987). Intraseasonal variation in reproductive synchrony relative to the daily cycle of sunlight (24 h) and monthly cycle of moonlight (29.6 d) is most commonly attributed to avoiding or swamping predators (Johannes 1978, Ims 1990).

In addition to synchronizing with diel and lunar cycles, larval release by coastal marine organisms is timed to different phases of the tides, including semi-
The purpose of this study was to determine the degree and timing of intraspecific reproductive synchrony by 4 common species of intertidal crabs that reside in a mixed semidiurnal tidal regime (usually 2 but sometimes 1 tide per day) along the upwelling coast of California. Our specific objectives were to

- Determine the degree of reproductive synchrony around the safe period. Along the coast of California, upwelling is stronger and more persistent north of San Francisco Bay than farther south. This spatial variability already has been found to affect the evolution of seasonal patterns of reproductive timing by fishes and crabs in the region (Parrish et al. 1981, Shanks & Eckert 2005). The colder temperatures in the strong, persistent upwelling regions of northern California could result in weaker synchrony and greater predation than observed in southern California by increasing exposure to variable air and water temperatures over longer incubation periods.

- The purpose of this study was to determine the degree and timing of intraspecific reproductive synchrony by 4 common species of intertidal crabs that reside in a mixed semidiurnal tidal regime (usually 2 but sometimes 1 tide per day) along the upwelling coast of California. Our specific objectives were to

- Determine the degree of reproductive synchrony around the safe period. Along the coast of California, upwelling is stronger and more persistent north of San Francisco Bay than farther south. This spatial variability already has been found to affect the evolution of seasonal patterns of reproductive timing by fishes and crabs in the region (Parrish et al. 1981, Shanks & Eckert 2005). The colder temperatures in the strong, persistent upwelling regions of northern California could result in weaker synchrony and greater predation than observed in southern California by increasing exposure to variable air and water temperatures over longer incubation periods.

The purpose of this study was to determine the degree and timing of intraspecific reproductive synchrony by 4 common species of intertidal crabs that reside in a mixed semidiurnal tidal regime (usually 2 but sometimes 1 tide per day) along the upwelling coast of California. Our specific objectives were to
determine whether the synchrony and timing of larval release were (1) similar to patterns described elsewhere in the world, (2) affected by variation in upwelling intensity along the coast and (3) influenced by variable water and air temperatures during long incubation periods. We expected that the timing of larval release would be synchronized with nocturnal maximum spring tides to avoid planktivory, but that larval release would be more weakly synchronized than in tropical and other temperate regions. In addition, we expected incubation periods to be longer and reproductive synchrony to be weaker in northern than in southern and central California, where waters are warmer. Determining the extent of variation in the synchrony and timing of larval release relative to the safe period is the first step in evaluating the likely fitness consequences in upwelling regimes.

MATERIALS AND METHODS

Determining the timing and synchrony of larval release. The lined shore crab *Pachygrapsus crassipes* occurs in the high intertidal zone of rocky shores and salt marshes, the purple shore crab *Hemigrapsus nudus* and porcelain crab *Petrolisthes cinctipes* both occur in the midintertidal zone of rocky shores and the yellow shore crab *Hemigrapsus oregonensis* occurs from the lower intertidal to the subtidal zone in estuaries. We collected all ovigerous crabs in northern California from the rocky shores of Bodega Harbor or the adjacent open coast, and we collected ovigers from several locations in southern and central California (Fig. 1). *P. cinctipes* was collected from boulder fields and mussel beds between Ventura and Santa Barbara (southern California), *P. crassipes* was collected from the jetty at the Channel Islands Harbor entrance (southern California) and *H. nudus* and *H. oregonensis* were collected from Elkhorn Slough near the entrance to Moss Landing Harbor (central California). All crabs were collected during low tides either from underneath overturned stones during the daytime or with the use of a flashlight at night to immobilize them. Time periods, numbers of ovigerous crabs and numbers of days that crabs were observed are presented in Table 1.

Because all intertidal crabs release larvae during high tide while they are inundated (Forward 1987, Morgan 1995, Thurman 2004), we focused on determining the timing of larval release relative to the other 3 environmental cycles (diel, tidal amplitude, lunar) by means of a method that is conducive to long-term monitoring. Ovigerous females that were collected in northern California were held in uncov-
erred, outdoor, flow-through seawater tables at Bodega Marine Laboratory (BML), and those from southern California were held in covered, flow-through seawater tables at the Marine Science Institute (MSI) in Santa Barbara. Plastic mesh covered the tanks at BML to shade crabs from direct sunlight by ~25% because these species typically remain under rocks during the daytime. We determined the timing of larval release by all species by holding ovigerous females individually at ambient seawater and light conditions. Large crabs were held in culture dishes (14.0 or 22.9 cm diameter), and small crabs were held in the compartments (4.5 \times 4 \times 4 \text{ cm}) of plastic trays. Crabs were checked daily for larval release when seawater in the containers was changed. Females infrequently released larvae on 2 consecutive days, and these females were scored as releasing larvae on the first day. Females that released larvae were returned to the collection site and were occasionally replenished with newly collected ovigerous females.

This method yields accurate estimates of hatching patterns relative to lunar and tidal amplitude cycles, because the date of larval release is established once embryos are spawned as long as crabs are maintained at ambient temperatures. The efficacy of this method has been demonstrated previously for many crab species in a range of tidal and upwelling regimes by comparing hatching patterns in trays to those determined in situ (Salmon et al. 1986, Morgan & Christy 1994, 1995, Morgan 1996a). Crabs often were checked shortly after sunrise and before sunset to determine whether they released larvae during the day or night.

The duration of the incubation period for each species was estimated by determining the maximum time that crabs brooded embryos under ambient conditions. Estimates of the incubation periods improved when large numbers of crabs were collected because the probability of capturing females bearing newly spawned embryos increased.

Data analysis. Synchrony relative to environmental cycles: The predicted difference between the maximum range between a high and low tide was calculated for each day of the observation period by means of NOAA tide tables for each crab collection site. Rayleigh’s test was used to detect peaks in timing of larval release relative to both lunar and tidal amplitude cycles. Data were divided into 14 d periods to determine the timing of larval release relative to the tidal amplitude cycle and 15 d periods for the semilunar cycle. Values of Rayleigh’s test depend on sample size and are not comparable among different observation periods. Instead, this test detected the degree of synchrony in larval release and the timing relative to tidal amplitude and lunar cycles. A higher r-value and lower magnitude for one environmental cycle relative to the other between observation periods indicated the relative importance of the 2 cycles for the timing of larval release.

Time series analysis of synchrony relative to the tidal amplitude cycle: Cross-correlation and cross-Fourier analyses were used to determine the timing of larval release for time series ≥2 mo long (5 of the 8 observation periods). Hatching data were log transformed for this analysis. Autocorrelations of 1 to 3 d were evident in some of these data and were removed before analysis; seasonal trends were not evident. In cross-correlations, the time series of larval release was lagged relative to that of the tidal amplitude, which was held stationary. Only lags of 10 to 20% of the time series were considered to be valid (Emery & Thomson 1997).

Effects of environmental factors on synchrony and timing: We examined the potential influence of 3 environmental variables on the synchrony and timing of larval release by Hemigrapsus oregonensis and Petrolisthes cinctipes near Bodega Bay, the 2 longest data sets. We used time-series analysis to compare the temporal pattern of hatching to daily records of sea surface temperature (SST) and air temperature (monitored near BML) and tidal amplitude (from tide tables) from the same time period. We assumed that the probability of hatching on a given day was likely to reflect environmental conditions over several preceding days. Therefore, we constructed statistical models in which the proportion of available broods hatched on Day \(t \) was a function of the mean environmental conditions over the previous week (Days \(t - 1 \) to \(t - 7 \)). Because hatching also may occur in response to recent changes in the environment, we also constructed models with terms for the rate of change in an environmental parameter, defined as the mean of the variable over the preceding 3 d (Days \(t - 1 \) to \(t - 3 \)) minus the mean of the variable on the 3 \(d \) preceding that interval (Days \(t - 4 \) to \(t - 7 \)). This approach captures smooth trends in each variable rather than daily fluctuations. We limited our analysis to the week preceding hatching to minimize the loss of hatching observations at the beginning of the time series, since physical observations were not available before the onset of hatching data collection.

We considered linear models with terms for both the mean and rate of change in SST, tidal amplitude and air temperature, as well as interactions between those 6 factors. We then compared the suite of models generated for each species using Akaike’s Information Criterion (AIC). Models were fitted with generalized least squares (GLS) with an error covariance matrix that accounted for the autocorrelation structure of the data sets (see supplement at www.int-res.com/articles/suppl/m425p103_supp.pdf for details).
RESULTS

Timing and synchrony of larval release

The 4 species of crabs generally released larvae near spring tides at night, regardless of where they were collected along the coast (Fig. 2, Table 2). Near Bodega Bay in northern California, all 4 species released larvae during or 1 d before spring tides, except the pattern was not significant for *Pachygrapsus crassipes* according to Rayleigh’s test (Figs. 2 & 3, Table 2). In central and southern California, Rayleigh’s test indicated that 3 species released larvae during or 2 d before spring tides, and *P. crassipes* released larvae 4 d before spring tides in a brief time series (Fig. 2, Table 2). A brief second trial for 1 of the 3 species (*Petrolisthes cinctipes*) did not show a significant pattern (Table 2). Cross-correlations for all species again showed that larval release peaked near spring tides in central and southern California (Fig. 3, Table 2). The coupling of larval release to the tidal amplitude cycle was similar for species that reside high (*P. crassipes*, *Hemigrapsus nudus*) or low (*P. cinctipes*, *H. oregonensis*) in the intertidal zone. Similar percentages of larvae were released at night by the 4 species in northern California (86 to 100%) and central and southern California (90 to 100%).

The timing of larval release was not as tightly related to the lunar as to the tidal amplitude cycle.

Fig. 2. Timing of larval release relative to tidal amplitude and lunar cycles by (a) *Petrolisthes cinctipes* near Bodega Bay (northern California) from 6 March to 8 August 2001 and between Ventura and Santa Barbara (southern California) from 18 March to 10 May and 26 June to 28 July 1997, (b) *Hemigrapsus oregonensis* near Bodega Bay from 11 December 2000 to 21 May 2001 and in Elkhorn Slough (central California) from 16 March to 25 May 1997, (c) *H. nudus* near Bodega Bay from 7 March to 5 July 2001 and in Elkhorn Slough from 8 July to 4 August 1997 and (d) *Pachygrapsus crassipes* near Bodega Bay from 13 July to 5 September 2001 and at Ventura from 26 June to 22 July 1997. Full moons are indicated by open circles and new moons are indicated by filled circles.
(Fig. 2, Table 2). Only 2 species in northern California released larvae during or 1 d before new and full moons (Petrolisthes cinctipes, Hemigrapsus nudus). In central and southern California, peak release by only 2 species occurred during or 1 d before new and full moons (H. oregonensis, H. nudus). The other 2 species (P. cinctipes, Pachygrapsus crassipes) released larvae 6 d before new and full moons (i.e. on quarter moons), and the longest trial for one of them was not related to lunar phase (P. cinctipes).

Peaks in larval release were neither pronounced nor closely coupled with the biweekly tidal amplitude.
cycle indicating that synchrony was weak (Fig. 3, Table 2). Periodicities in 5 of 6 cases with long time series were not significant; a biweekly periodicity was found only for *Hemigrapsus oregonensis* at Elkorn Slough. Maximum incubation times by the 4 species were longer in northern (53 to 78 d) than in southern or central California (26 to 53 d).

Effects of environmental factors on synchrony and timing

For *Hemigrapsus oregonensis*, the lagged mean tidal amplitude and the rates of change in tidal amplitude and SST were the only factors with statistically significant (p < 0.05) coefficients in univariate GLS models (Fig. S1 in the supplement at www.int-res.com/articles/suppl/m425p103_supp.pdf). Given the evidence that those 3 variables had better predictive power than did the others, we then considered a full set of models including interactions among those 3 variables (Table S1a). The most parsimonious model (AIC weight $w = 0.89$) had terms for the rate of change in SST, tidal amplitude and their interaction (Table S1a). In this model, the proportion of broods hatching increased on a rising tide or when SST was increasing; when both SST and tidal amplitude were increasing the total effect was slightly less than additive (Table S1b). This model explained 12.5% of the variance in the data and afforded a reasonable fit to the hatching time series, capturing the presence, though not the magnitude, of most of the peaks and valleys in hatching (Fig. 4). The fit was poorest in regions near the beginning of the time series, for which SST data were missing and had been interpolated. For *Petrolisthes cinctipes*, the lagged mean tidal amplitude and air temperature were the only factors with coefficients that were significantly different from zero in univariate GLS models, but no model that included environmental factors was more parsimonious than an intercept-only model (in the supplement at www.int-res.com/articles/suppl/m425p103_supp.pdf).

DISCUSSION

Larval release by the 4 species of crabs peaked near spring tides at night in an upwelling regime as it does for many intertidal species elsewhere in the world (Forward 1987, Morgan 1995, Thurman 2004). The timing patterns also were characteristic of other mixed semidiurnal tidal regimes, where peak larval release generally is more closely related to the tidal cycle than the lunar cycle and larvae sometimes are released in daylight (Morgan & Christy 1994, Morgan 1996a, Kellmeyer & Salmon 2001, Weaver and Salmon 2002). Because the tidal amplitude and lunar cycles do not always coincide in mixed semidiurnal tidal regimes, crabs must time larval release according to only one of the 2 environmental cycles, and they typically timed it by the tides rather than moonlight with the exception of one semiterrestrial species (Saigusa 1988). Crabs sometimes released larvae in daylight because high tides do not always peak at night in mixed semidiurnal tidal regimes (Morgan & Christy 1994, Morgan 1995, 1996a,b, Thurman 2004).

The timing of larval release was similar along the coast of California despite differences in the intensity and persistence of upwelling (Hickey 1998). The different timing pattern by one species (4 d before spring tides by *Pachygrapsus crassipes*) and nonsignificant results (second brief trial for *Petrolisthes cinctipes*) are to be expected for weakly synchronous timing patterns in the shorter time series obtained for southern and central California.

Larval release was less synchronous than that observed in nonupwelling regimes. The strong, regular peaks of biweekly or monthly larval release that are
characteristic of intertidal crabs elsewhere in the world were not evident along our upwelling coast. Nor was larval release more synchronous by species that live higher in the intertidal zone, even though females in natural populations are constrained to release larvae on maximum amplitude tides while they are inundated (Salmon et al. 1986, Morgan 1995, Morgan & Christy 1995). Although larval release by all 4 species coincided with spring tides in most trials, peaks of larval release were neither well defined nor highly periodic. The weak synchrony raises the possibility that females that are not inundated by high tides every day commonly walk to the water line to release larvae rather than releasing larvae from the safety of their refuges, which would increase the risk of predation on females, embryos and newly released larvae (Morgan & Christy 1995).

The weak synchrony in the timing of larval release probably arose from the cumulative effect of environmental variation during long incubation times in cold water and air temperatures. This relationship was found for 1 of the 2 crabs tested (Hemigrapsus oregonensis from Bodega Bay), and the amount of variation in reproductive synchrony explained by temperature might even have been greater if a complete temperature record had been available. Although less plausible, selection for synchronous release may have been relaxed if newly released larvae encountered fewer planktivorous fishes in upwelling regimes. Juvenile fishes that are exclusively zooplanktivorous regardless of their dietary preferences as adults (Morgan 1990) are most abundant in estuaries and kelp forests, both of which are patchy in space along the California coast. However, larval release by many intertidal crabs is quite synchronous in the weaker upwelling regimes off the Pacific Coast of Panama (Christy 1986, Morgan & Christy 1994, 1995, 1997) and Portugal (Paula 1989, Pereira et al. 2000), suggesting that fish predation on newly released larvae can be high in warmer upwelling regions. Large waves obscuring tidal cycles were not responsible for the weak synchrony (Flores & Paula 2002), because crabs were collected in sheltered habitats (except for Pachygrapsus crassipes near Bodega Bay).

Follow-up studies should be conducted with intertidal crabs across upwelling regimes to determine (1) the degree of synchrony in the timing of larval release in the field, (2) whether females of mid- and high intertidal species walk to the shore to release larvae and (3) whether fish predation on newly hatched larvae increases in upwelling regimes. We recommend using a precise, labor-intensive method to determine incubation periods and the timing of larval release in the field. This method involves placing a bottomless, well-ventilated box with a translucent cover over a natural population, and frequently pumping water and any newly hatched larvae while crabs are inundated during high tide (Morgan & Christy 1994, Morgan 1996a). Surveying ovigerous females at the waterline with a flashlight over consecutive nocturnal high tides would determine whether larvae are released from the safety of their refuges (DeCoursey 1983). Comparing the density of fish and numbers of larvae eaten by fish (Morgan 1990, Hovel & Morgan 1997) between cold upwelling and warm coasts would be a first step toward determining whether there was a cost to poorly synchronized larval release.

In conclusion, larval release by intertidal crabs appears to be weakly synchronized in cold upwelling regimes. This result stands in stark contrast to well-known examples of strong synchrony in other coastal regions. Given the intense selective pressures leading to synchrony in those regions, our results suggest two possible interpretations. Either planktivory is lower in this upwelling region, which we find unlikely, or environmental constraints preclude strong synchrony. Females may be unable to compensate for the cumulative variation in temperature experienced by developing embryos during long incubation periods in cold upwelled waters. Weak synchrony has important implications for the reproductive success of all intertidal species that brood their offspring by exposing newly released larvae to a greater risk of fish predation. The survival of newly hatched larvae has been linked to peaks in settlement for crabs and fishes (Christy & Stancyk 1982, Robertson et al. 1988, Morgan 1990, Tilburg et al. 2008), and increased fish predation resulting from weak synchrony could contribute to recruitment limitation in upwelling regimes (Gaines & Roughgarden 1987). The timing of larval release by a diverse array of taxa can be affected by other selective factors (Salmon et al. 1986, Anger et al. 1994, Morgan 1987b, 1995, Brodie et al. 2007), but weaker synchrony should still result in reduced reproductive success relative to other regions.

Acknowledgements. We thank S. Anderson for contributing crabs at MSI. We also thank the faculty and students at Moss Landing Marine Laboratories for the visiting professor appointment that allowed S.G.M. to continue this study in central California. K. Menard and the Aquatic Resources Group of BML helped check for hatches enabling S.G.M. to maintain daily records over long time periods. We thank J. Fisher for assisting with assembling the tidal amplitude data and for discussions on time series analysis. Partial support for this research was provided by the National Science Foundation (OCE-0326110).

LITERATURE CITED

Korringa P (1947) Relations between the moon and periodicity in the breeding of marine animals. Ecol Monogr 17:247–381

Korringa P (1947) Relations between the moon and periodicity in the breeding of marine animals. Ecol Monogr 17:247–381

Morgan SG, Anastasia JR (2008) Behavioral tradeoff conserves transport while increasing the risk of predation across the ranges of marine species. Proc Natl Acad Sci USA 105:222–227

Morgan SG, Christy JH (1996) Survival of marine larvae under the countervailing selective pressures of photodamage and predation. Limol Oceanogr 41:498–504

Editorial responsibility: Paul Snelgrove, St. John’s, Newfoundland, Canada

Submitted: May 10, 2010; Accepted: November 30, 2010

Proofs received from author(s): February 28, 2011